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in only the SCCKN cell line infected with Ad.tk 
at MOI 2.5 followed by 1 µg/mL GCV after 24 h 
(Fig. 7).  However, we could not evaluate correctly 
at 48 h and 72 h because most treated SCCKN 
cells had easily come off in the staining procedure.  
However, the untreated SCCKN cells showed no 
TUNEL signal.
 

Morphological examinations
 
There were no significant differences in morpho-
logical findings in both semi-thin and ultra-thin 
sections after HSV-tk/GCV treatment among the 
cell lines.  Semi-thin sections of untreated cells 
showed variations in size and shape and occasion-
ally small vesicles in the cytoplasm with a few mi-
toses (Fig. 8a).  In contrast, a large number of treat-
ed cells became swollen with or without membrane 
disruption, sometimes involving nuclei disruption 
(Fig. 8b).  Cytoplasmic vesicles were markedly 
increased. There were few cells with chromatin ag-
gregation in HSC-4 and SCCKN cell lines.
        Ultra-thin sections revealed intact nuclei, 
intracellular organelles and their membranes in un-
treated cells (Fig. 9a).  Otherwise, a large number 
of treated cells contained enlarged and rounded 
nuclei in which heterochromatin was sparse.  Cyto-
plasmic membranes were also disrupted (Fig. 9b).  

Fig. 7.  TUNEL staining of treated SCCKN 24 h after 
GCV treatment.  Cells were infected with Ad.tk at MOI 
2.5, and followed by 1 µg/mL GCV.  TUNEL-positive 
cells with brown-labeled nuclei are occasionally detect-
ed in only SCCKN cell line (arrows).

Fig. 8.  Semi-thin section micrographs of HSC-4 cells.  
(a) Untreated cells.  Some cells occasionally have small 
vesicles, and some display mitoses.  (b) Treated cells 72 
h after GCV treatment.  Cells were infected with Ad.tk 
at MOI 2.5, and followed by 1 µg/mL GCV.  Cells be-
come swollen and intracytoplasmic vesicles remarkably 
increase.  Few cells show chromatin aggregation (ar-
rows). 

Fig. 6.  Western blot analysis of P53, P21, Bax, Bcl-2 and 
caspase-3 of each cell lines.  Cells were infected with 
Ad.tk at MOI 5 for HSC-3, 2.5 for HSC-4 and SCCKN, 
and followed by 1 µg/mL GCV.  Cells were harvested 
in a time-dependent manner.  Uninfected cells without 
GCV treatment were used as control.  (a) HSC-3, (b) 
HSC-4 and (c) SCCKN cell lines.  C, control. 
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A few cells showing chromatin aggregation to the 
nuclear membranes, also displayed cytoplasmic 
membranes disruption.  Treated cells presented 
structural changes of intracellular organelles in-
volving enlargement of mitochondria with the dis-
appearance of cristae, vesiculation and vacuoliza-
tion of endoplasmic reticulum.  Apoptotic bodies 
were not observed in any of the treated cells.
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Fig. 9.  Ultra-thin section micrograph of HSC-4 cells.  (a) Untreated cells.  (b) Treated cells 72 h after GCV treat-
ment.  Cells were infected with Ad.tk at MOI 2.5, and followed by 1 µg/mL GCV.  A large number of cells contain 
enlarged and rounded nuclei of which hetero chromatin are sparse.  Some of treated cells show chromatin aggrega-
tion.  But their cytoplasmic membranes are still disruptured.  Inset of (b) displays enlargement of mitochondria with 
disappearance of cristae, vesiculation and vacuolization of endoplasmic reticula.  Bars in (a) and (b) = 1 µm.

Discussion

This study clearly demonstrated that HSV-tk/GCV 
treatment showed diverse but obvious sensitivity to 
oral SCC cell lines independent of their histologi-
cal status (Table 1 and Fig. 2).  Oral SCC cell lines 
displayed high susceptibility to HSV-tk/GCV treat-
ment despite low transduction, suggesting possible 
tumoricidal effects even in the case of inability of 
100% gene delivery (Fig. 1).  In the HSC-3 cell 
line, however, HSV-tk/GCV treatment showed the 
upper limit bounds at MOI 10.  As reported previ-
ously, a higher expression of HSV-tk gene may not 
be able to further enhance the tumoricidal effect, 
though a threshold level of HSV-tk gene expression 
is necessary for maximum cell killing (Chen et al., 
1995).
        The tumoricidal mechanism of HSV-tk/GCV 
treatment has focused on exploring the molecu-
lar biological events associated with apoptosis 
(Samejima and Maruelo, 1995; Wei et al., 1998; Ri-
vas et al., 2001).  To date, the most reliable method 
for identifying apoptotic cell death is the detection 
of the occurrence of internucleosomal DNA strand 
breaks (Wyllie, 1980).  Concerning past HSV-
tk/GCV treatment studies, several reported the ex-
istence of DNA laddering (Samejima and Maruelo, 
1995; Wei et al., 1998), but several reported the 

opposite (Kaneko and Tsukamoto, 1995).  It is pos-
sible that the DNA fragmentation assay might not 
detect low levels of apoptosis.  Confirmation of the 
phenotype of dying cells is needed by reference to 
morphology using electron microscopy (Vile et al., 
1997).  In fact, some cases failed to demonstrate 
DNA laddering even when the presence of apop-
totic cells was further confirmed using electron 
microscopy (Freeman et al., 1993; Craperi et al., 
1999).  In the present results, DNA fragmenta-
tion showed unspecific DNA degradation, that is, 
smearing (Fig. 3).  Accordingly, both semi- and 
ultra-thin examinations revealed the phenotype of 
dying cells was necrotic in all cell lines.
        Previous studies of flow cytometry demon-
strated that HSV-tk/GCV treatment caused either 
S- and/or G2/M-phase cell cycle arrest before 
undergoing cell death (Kaneko et al., 1995; Wei 
et al., 1998; Craperi et al., 1999).  The present re-
sults showed cell death progressing with no cell 
cycle arrest (Fig. 4).  The DNA content of sub-G1 
increased in a time-dependent manner.  A rapid 
increase was observed in the HSC-4 cell line at 72 
h (42.7%), in which DNA fragmentation definitely 
showed smearing suggesting no occurrence of reg-
ular DNA double-strand breaks.  Annexin V has 
been used as another biological marker to detect 
the early stage of apoptosis before the occurrence 
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of morphological changes in single cells (Martin 
et al., 1995).  The present results showed that an-
nexin V-positive/PI-negative cells corresponding 
to apoptotic cells, increased in a time-dependent 
manner in all cell lines (Fig. 5b), although further 
semi- and ultra-thin examinations revealed ne-
crotic morphological features.  While the external-
ization of phosphatidylserine during apoptosis has 
been presented, intracellular events have not been 
adequately elucidated.  Although the meaning of 
the annexin V-positive reaction induced by HSV-
tk/GCV treatment is not contested, this phenom-
enon implies the feasibility of inspection and exem-
plification by phagocytic cells (Depraetere, 2000; 
Hanayama et al., 2002).  Changes in the properties 
of their surface membrane would improve the com-
bination with a targeting approach such as immu-
notherapy. 
        Since the tumoricidal effect of HSV-tk/GCV 
treatment is conceivable via DNA damage, the loss 
of function of p53 can develop resistance to apop-
tosis. Li et al. reported, however, the HSV-tk/GCV 
cytotoxic response did not depend on the expres-
sion of a functional p53 (Li et al., 1999; Craperi et 
al., 1999).  Similarly, we demonstrated an obvious 
tumoricidal effect without either p53 or p21 expres-
sion (Figs. 4 and 6).  These results were consistent 
in all cell lines and suggested that p53-dependent 
cell cycle regulation or apoptosis induction may not 
correlate with the tumoricidal effect of HSV-tk/
GCV treatment to oral SCC.  Alternatively, HSV-
tk/GCV treatment might have considerable poten-
tial to oral SCC that highly expresses mutated p53 
in vivo (Naglar et al., 2002) and in vitro (Sakai and 
Tsuchida, 1992).  A previous exogenous p53 trans-
duction study suggested co-expression of p53 did 
not enhance the cytotoxicity of HSV-tk/GCV treat-
ment, although p53 was able to increase amount of 
apoptosis which was markedly less than the total 
cell death in vitro (Xie et al., 1999).
        Dimerization between Bax and Bcl-2 is an 
important factor to direct either death promotion or 
death inhibition.  Bax accumulation was reported 
after GCV exposure in glioma cell lines (Craperi 
et al., 1999).  However, they could not rule out 
the possible occurrence of necrotic cell death.  In 

contrast, over-expression of Bcl-2 inhibited HSV-
tk/GCV-induced activation of caspase and apop-
tosis (Beltinger et al., 2000).  However, no syn-
chronous correlation could be found between the 
expression levels of Bcl-2 family and the sensitivity 
to the oral SCC cell lines.
        No cleavage or activation of caspase-3 was 
detected in oral SCC cell lines.  This suggested 
the existence of an alternative molecular pathway 
responsible for the tumoricidal effect of HSV-tk/
GCV treatment to oral SCC cell lines even though 
the route of cell death is unknown.
        One exception in the present study was an oc-
casional positive TUNEL signal in SCCKN cells 
(Fig. 7).  However, no other evidence of apoptosis 
was detected with other biological assays.  Caution-
ary notes suggested that a positive TUNEL signal 
should not be considered as a specific marker of 
apoptosis because the assay would also suggest 
necrotic cell death (Charriaut-Marlangue and Ben-
Ari, 1995; Grask-kraupp et al., 1995).
        Apoptosis was originally described on the 
basis of the morphological features by electron 
microscopy (Kerr et al., 1972) even though some 
features may also be detectable by light micros-
copy.  Apoptotic bodies including cellular remnants 
should be observed either in the intercellular space 
or within the cytoplasm of intact cells.  A large 
number of treated cells showed disintegration of the 
cell structure involving irregular scattered hetero-
chromatin, swelling of cytoplasm and intracellular 
organelles, and cytoplasmic membrane disruption 
in all cell lines.  Furthermore, intact cells contain-
ing apoptotic bodies that deposit the fragmented 
components from neighboring dead cells were not 
found. Based on the annexin V/PI double staining 
at 72 h, the HSC-4 cell line should include the cells 
of early stage apoptosis of 19.1% (Fig. 5).  How-
ever, we could not find firm evidence of apoptosis 
in semi- and ultra-thin section examinations.  Con-
sequently, apoptosis may not play a central role in 
the tumoricidal mechanism.  The hypothesis that 
the bystander effect is mediated by phagocytosis is 
unacceptable for oral SCC cells in vitro.
        A previous study using Fas ligand demon-
strated an artificial deficiency of caspase-8 resulted 
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in a switch of cell death from apoptosis to necrosis 
in Jurket cell lines (Kawahara et al., 1998).  This  
implies that caspase activation itself was dispens-
able for determining cell death.  Kitanaka and 
Kuchino (1999) suggested the existence of caspase-
independent programmed cell death with necrotic-
like morphology, that can be activated either alone 
or in concert with the caspase-dependent apoptotic 
program.  Differential sensitivity and the type of 
cell death induced by HSV-tk/GCV treatment ap-
pear to be dependent upon cell-type difference, in 
addition to the status of the apoptosis-related gene.
        In summary, we demonstrated that oral SCC 
cell lines exhibited an obvious sensitivity to HSV-
tk/GCV treatment suggesting the presence of a 
p53- and caspase-3-independent death signaling 
pathway.  However, the mechanism and the molec-
ular pathway responsible for HSV-tk/GCV-induced 
cell death are still unknown.  A better understand-
ing of the cell death mechanism is essential to 
establish an appropriate and effective modality in 
future studies. 
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